N point moving average filter matlab


Resposta de Freqüência do Filtro de Média Corrente A resposta de freqüência de um sistema LTI é a DTFT da resposta de impulso, A resposta de impulso de uma média móvel de L é de média móvel. Uma vez que o filtro de média móvel é FIR, a resposta de freqüência reduz-se à soma finita We Pode usar a identidade muito útil para escrever a resposta de freqüência como onde temos deixar ae menos jomega. N 0 e M L menos 1. Podemos estar interessados ​​na magnitude desta função para determinar quais freqüências passam pelo filtro sem atenuação e quais são atenuadas. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianos por amostra. Observe que em todos os três casos, a resposta de freqüência tem uma característica de passagem baixa. Uma componente constante (frequência zero) na entrada passa através do filtro sem ser atenuada. Certas frequências mais elevadas, como pi / 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro lowpass, então não temos feito muito bem. Algumas das frequências mais altas são atenuadas apenas por um factor de cerca de 1/10 (para a média móvel de 16 pontos) ou 1/3 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. O gráfico acima foi criado pelo seguinte código de Matlab: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-iomega)) H8 (1/8 ) (1-exp (-iomega8)) ./ (1-exp (-iomega)) lote (omega , Abs (H4) abs (H8) abs (H16)) eixo (0, pi, 0, 1) Copyright copy 2000 - Universidade da Califórnia, BerkeleyComputing uma média de um simples 1-D vector de dados parece bastante simples. Na verdade, a documentação do MATLAB para FILTER felizmente afirma algo como: Você pode usar o filtro para encontrar uma média em execução sem usar um loop for. Este exemplo encontra a média em execução de um vetor de 16 elementos, usando um tamanho de janela de 3: Para meus propósitos, há duas coisas irritantes sobre este resultado: o ponto de saída n é a média dos pontos de entrada n - (windowSize-1)..n (isto é, não centrado, como evidenciado pela mudança horizontal) e os pontos à esquerda dos dados disponíveis são tratados como zeros. FILTFILT lida com ambas as questões, mas tem outras desvantagens. Sua parte do Processamento de Sinal Toolbox, e não lidar bem com NaNs (que Id como excluídos da média). Algumas pessoas na FEX obviamente tiveram as mesmas frustrações, mas parece estranho para mim que algo simples requer código personalizado. Qualquer coisa que estou faltando aqui perguntou Aug 10 10 at 21:39 Hmm. Há mesmo uma maneira de fazer o preenchimento e obter a média É parece que se dizer 3 caixas estão caindo da borda em comparação com 1, você precisaria pad com valores diferentes, a fim de obter a média correta para o primeiro lixo. Especificamente, você precisa preencher com a média dos compartimentos válidos, que depende do ponto em consideração. Então eu não tenho certeza se isso é possível com o padding ndash Matt Mizumi Aug 11 10 às 4: 06Eu preciso calcular uma média móvel em uma série de dados, dentro de um loop for. Eu tenho que começar a média móvel sobre N9 dias. O array Im computing in é 4 séries de 365 valores (M), que são valores médios de outro conjunto de dados. Eu quero traçar os valores médios dos meus dados com a média móvel em um gráfico. Eu pesquisei um pouco sobre as médias móveis eo comando conv e encontrei algo que eu tentei implementar no meu código. Então, basicamente, eu computo o meu médio e plotá-lo com uma média móvel (errada). Eu escolhi o valor de wts fora do site mathworks, de modo que está incorreto. (Fonte: mathworks. nl/help/econ/moving-average-trend-estimation) Meu problema, porém, é que eu não entendo o que este wts é. Alguém poderia explicar Se tem algo a ver com os pesos dos valores: que é inválido neste caso. Todos os valores são ponderados da mesma forma. E se eu estou fazendo isso inteiramente errado, eu poderia obter alguma ajuda com ele Meus mais sinceros agradecimentos. Ask Sep 23 14 at 19:05 Usando conv é uma excelente maneira de implementar uma média móvel. No código que você está usando, wts é o quanto você está pesando cada valor (como você adivinhou). A soma desse vetor deve ser sempre igual a um. Se você deseja pesar cada valor uniformemente e fazer um filtro de tamanho N em movimento, então você gostaria de fazer Usando o argumento válido em conv resultará em ter menos valores em Ms do que você tem em M. Use o mesmo se você não se importa os efeitos de Zero preenchimento. Se você tem a caixa de ferramentas de processamento de sinal, você pode usar o cconv se quiser experimentar uma média móvel circular. Algo como Você deve ler o conv e cconv documentação para obter mais informações se você havent já. Você pode usar o filtro para encontrar uma média em execução sem usar um loop for. Este exemplo localiza a média em execução de um vetor de 16 elementos, usando um tamanho de janela de 5. 2) suave como parte da Caixa de Ferramentas de Ajuste de Curva (que está disponível na maioria dos casos) yy suave (y) suaviza os dados no vetor de coluna Y usando um filtro de média móvel. Os resultados são retornados no vetor de coluna yy. A extensão padrão para a média móvel é 5.Documentação Este exemplo mostra como usar filtros de média móvel e reamostragem para isolar o efeito de componentes periódicos da hora do dia sobre as leituras de temperatura por hora, bem como remover o ruído de linha indesejável de um sistema aberto - Medida de voltagem. O exemplo também mostra como suavizar os níveis de um sinal de relógio enquanto preserva as bordas usando um filtro mediano. O exemplo também mostra como usar um filtro Hampel para remover outliers grandes. Suavização de Motivação é como descobrimos padrões importantes em nossos dados enquanto deixamos de lado coisas que não são importantes (ou seja, ruído). Utilizamos a filtragem para executar esta suavização. O objetivo do alisamento é produzir mudanças lentas no valor de modo que seu mais fácil ver tendências em nossos dados. Às vezes, quando você examinar os dados de entrada, você pode desejar suavizar os dados para ver uma tendência no sinal. No nosso exemplo, temos um conjunto de leituras de temperatura em Celsius tomadas a cada hora no Aeroporto Logan para todo o mês de janeiro de 2017. Note que podemos ver visualmente o efeito que a hora do dia tem sobre as leituras de temperatura. Se você está interessado somente na variação diária da temperatura durante o mês, as flutuações de hora em hora só contribuem o ruído, que pode fazer as variações diárias difíceis de discernir. Para remover o efeito da hora do dia, gostaríamos agora de suavizar nossos dados usando um filtro de média móvel. Um filtro de média móvel Na sua forma mais simples, um filtro de média móvel de comprimento N toma a média de cada N amostras consecutivas da forma de onda. Para aplicar um filtro de média móvel a cada ponto de dados, construímos nossos coeficientes de nosso filtro de modo que cada ponto seja igualmente ponderado e contribua 1/24 para a média total. Isso nos dá a temperatura média ao longo de cada período de 24 horas. Filter Delay Note que a saída filtrada está atrasada em cerca de doze horas. Isto é devido ao fato de que nosso filtro de média móvel tem um atraso. Qualquer filtro simétrico de comprimento N terá um atraso de (N-1) / 2 amostras. Podemos contabilizar esse atraso manualmente. Extraindo Diferenças Médicas Alternativamente, também podemos usar o filtro de média móvel para obter uma melhor estimativa de como a hora do dia afeta a temperatura global. Para fazer isso, primeiro, subtraia os dados suavizados das medições de temperatura por hora. Em seguida, segmente os dados diferenciados em dias e tome a média em todos os 31 dias do mês. Extraindo o Envelope de Pico Às vezes nós também gostaríamos de ter uma estimativa suavemente variável de como os altos e baixos de nosso sinal de temperatura mudam diariamente. Para fazer isso, podemos usar a função envelope para conectar altos e baixos extremos detectados em um subconjunto do período de 24 horas. Neste exemplo, nós asseguramos que haja pelo menos 16 horas entre cada extrema alta e extrema baixa. Podemos também ter uma idéia de como os altos e baixos tendem tomando a média entre os dois extremos. Filtros de média móvel ponderada Outros tipos de filtros de média móvel não pesam igualmente cada amostra. Outro filtro comum segue a expansão binomial de (1 / 2,1 / 2) n Este tipo de filtro aproxima-se de uma curva normal para grandes valores de n. É útil para a filtragem de ruído de alta freqüência para pequenas n. Para encontrar os coeficientes para o filtro binomial, convolve 1/2 1/2 com si mesmo e, em seguida, convida iterativamente a saída com 1/2 1/2 um número prescrito de vezes. Neste exemplo, use cinco iterações totais. Outro filtro um pouco semelhante ao filtro de expansão gaussiano é o filtro de média móvel exponencial. Este tipo de filtro de média móvel ponderada é fácil de construir e não requer um tamanho de janela grande. Você ajusta um filtro de média móvel ponderado exponencialmente por um parâmetro alfa entre zero e um. Um valor maior de alfa terá menos suavização. Amplie as leituras durante um dia. Filtros de CountryFIR, filtros de IIR e equação de diferença de coeficiente constante linear Filtros de média móvel causal (FIR) Discutimos sistemas em que cada amostra da saída é uma soma ponderada de (certa) das amostras da entrada. Vamos tomar um sistema de soma ponderada causal, onde causal significa que uma dada amostra de saída depende apenas da amostra de entrada atual e outros insumos mais cedo na seqüência. Nem os sistemas lineares em geral, nem os sistemas finitos de resposta ao impulso em particular, precisam ser causais. No entanto, a causalidade é conveniente para um tipo de análise que iria explorar em breve. Se simbolizamos as entradas como valores de um vetor x. E as saídas como valores correspondentes de um vetor y. Então tal sistema pode ser escrito como onde os valores de b são quotweights aplicados às amostras de entrada atuais e anteriores para obter a amostra de saída atual. Podemos pensar na expressão como uma equação, com o sinal de igual signo igual a, ou como uma instrução processual, com o sinal de igual significação atribuição. Vamos escrever a expressão para cada amostra de saída como um loop MATLAB de instruções de atribuição, onde x é um vetor N-comprimento de amostras de entrada, e b é um vetor M-comprimento de pesos. A fim de lidar com o caso especial no início, vamos incorporar x em um vetor mais longo xhat cujas primeiras M-1 amostras são zero. Vamos escrever a soma ponderada para cada y (n) como um produto interno, e faremos algumas manipulações das entradas (como inverter b) para este fim. Esse tipo de sistema é muitas vezes chamado de filtro de média móvel, por razões óbvias. De nossas discussões anteriores, deve ser óbvio que tal sistema é linear e invariante ao deslocamento. Claro, seria muito mais rápido usar a convolução de função MATLAB conv () em vez do nosso mafilt (). Em vez de considerar as primeiras M-1 amostras da entrada de ser zero, poderíamos considerá-los a ser o mesmo que as últimas M-1 amostras. Isso é o mesmo que tratar a entrada como periódica. Bem, use cmafilt () como o nome da função, uma pequena modificação da função mafilt () anterior. Na determinação da resposta de impulso de um sistema, não há geralmente nenhuma diferença entre estes dois, desde que todas as amostras não-iniciais da entrada são zero: Uma vez que um sistema deste tipo é linear e shift-invariante, sabemos que seu efeito em qualquer Sinusoid será apenas a escala e deslocá-lo. Aqui é importante que usemos a versão circular A versão circularmente convoluta é deslocada e escalada um pouco, enquanto a versão com convolução ordinária é distorcida no início. Vamos ver o que a escala exata e deslocamento é usando um fft: Tanto a entrada ea saída têm amplitude apenas nas freqüências 1 e -1, que é como deveria ser, uma vez que a entrada era uma sinusoid e o sistema era linear. Os valores de saída são maiores em uma proporção de 10,6251 / 8 1,3281. Este é o ganho do sistema. E quanto à fase Nós só precisamos olhar onde a amplitude é diferente de zero: A entrada tem uma fase de pi / 2, como nós pedimos. A fase de saída é deslocada por um 1,0594 adicional (com sinal oposto para a freqüência negativa), ou cerca de 1/6 de um ciclo à direita, como podemos ver no gráfico. Agora vamos tentar uma sinusoid com a mesma freqüência (1), mas em vez de amplitude 1 e fase pi / 2, vamos tentar amplitude 1,5 e fase 0. Sabemos que apenas a freqüência 1 e -1 terá amplitude não-zero, então vamos Basta olhar para eles: Novamente a relação de amplitude (15.9377 / 12.0000) é 1.3281 - e quanto à fase é novamente deslocado por 1.0594 Se esses exemplos são típicos, podemos prever o efeito do nosso sistema (resposta ao impulso .1.2 .3 .4 .5) em qualquer sinusoide com frequência 1 - a amplitude será aumentada em um fator de 1,3281 e a fase (freqüência positiva) será deslocada em 1,0594. Poderíamos continuar a calcular o efeito desse sistema sobre sinusóides de outras freqüências pelos mesmos métodos. Mas há uma maneira muito mais simples, e uma que estabelece o ponto geral. Dado que a circunvolução (circular) no domínio do tempo significa a multiplicação no domínio da frequência, daí decorre que, por outras palavras, a DFT da resposta de impulso é a razão da DFT da saída para a DFT da entrada. Nesta relação os coeficientes de DFT são números complexos. Desde abs (c1 / c2) abs (c1) / abs (c2) para todos os números complexos c1, c2, esta equação nos diz que o espectro de amplitude da resposta de impulso será sempre a relação do espectro de amplitude da saída para que Da entrada. No caso do espectro de fase, ângulo (c1 / c2) ângulo (c1) - ângulo (c2) para todos os c1, c2 (com a ressalva de que as fases que diferem por n2pi são considerados iguais). Portanto, o espectro de fase da resposta ao impulso será sempre a diferença entre os espectros de fase da saída e da entrada (com quaisquer correções de 2pi são necessárias para manter o resultado entre - pi e pi). Podemos ver os efeitos de fase mais claramente se desempacotar a representação da fase, isto é, se adicionarmos vários múltiplos de 2pi conforme necessário para minimizar os saltos que são produzidos pela natureza periódica da função ângulo (). Embora a amplitude e a fase sejam normalmente utilizadas para apresentação gráfica e mesmo tabular, uma vez que são uma maneira intuitiva de pensar sobre os efeitos de um sistema sobre os vários componentes de frequência de sua entrada, os coeficientes de Fourier complexos são mais úteis algébricamente, A expressão simples da relação A abordagem geral que acabamos de ver funcionará com filtros arbitrários do tipo esboçado, em que cada amostra de saída é uma soma ponderada de algum conjunto de amostras de entrada. Como mencionado anteriormente, estes são freqüentemente chamados filtros de resposta de impulso finito, porque a resposta ao impulso é de tamanho finito, ou às vezes filtros de média móvel. Podemos determinar as características de resposta de freqüência de tal filtro da FFT de sua resposta de impulso e também podemos projetar novos filtros com características desejadas por IFFT a partir de uma especificação da resposta de freqüência. Filtros Autoregressivos (IIR) Não haveria nenhum ponto em ter nomes para filtros FIR a menos que houvesse algum outro tipo de distinção, de modo que aqueles que estudaram pragmática não ficarão surpresos ao saber que existe de fato outro tipo principal Do filtro tempo-invariante linear. Estes filtros são às vezes chamados recursivos porque o valor das saídas anteriores (assim como entradas anteriores) importa, embora os algoritmos sejam geralmente escritos usando construções iterativas. Eles também são chamados filtros Infinite Impulse Response (IIR), porque em geral sua resposta a um impulso continua para sempre. Eles também são às vezes chamados de filtros auto-regressivos, porque os coeficientes podem ser considerados como o resultado de fazer uma regressão linear para expressar valores de sinal em função de valores de sinal anteriores. A relação dos filtros FIR e IIR pode ser vista claramente numa equação de diferença de coeficiente constante linear, isto é, estabelecendo uma soma ponderada de saídas igual a uma soma ponderada de entradas. Isto é como a equação que damos anteriormente para o filtro causal FIR, exceto que, além da soma ponderada de insumos, também temos uma soma ponderada de saídas. Se quisermos pensar nisso como um procedimento para gerar amostras de saída, precisamos reorganizar a equação para obter uma expressão para a amostra de saída corrente y (n), Adotando a convenção de que a (1) 1 (por exemplo, escalando outros como E bs), podemos nos livrar do termo 1 / a (1): y (n) b (1) x (n) b (2) x (n-1). B (Nb1) x (n-nb) - a (2) y (n-1) -. - a (Na1) y (n-na) Se todos os a (n) diferentes de a (1) são zero, isso reduz a nosso velho amigo o filtro FIR causal. Este é o caso geral de um filtro (causal) LTI, e é implementado pelo filtro de função MATLAB. Vejamos o caso em que os coeficientes b diferentes de b (1) são zero (em vez do caso FIR, onde a (n) são zero): Neste caso, a amostra de saída corrente y (n) é calculada como um (N-1), y (n-2), etc. Para ter uma idéia do que acontece com esses filtros, vamos começar com o caso em que: Ou seja, a amostra de saída atual é a soma da amostra de entrada atual e metade da amostra de saída anterior. Bem, tome um impulso de entrada através de alguns passos de tempo, um de cada vez. Deve ficar claro neste ponto que podemos facilmente escrever uma expressão para o n-ésimo valor de amostra de saída: é apenas (se MATLAB contado a partir de 0, isso seria simplesmente .5n). Como o que estamos calculando é a resposta ao impulso do sistema, demonstrámos por exemplo que a resposta ao impulso pode de fato ter infinitas amostras diferentes de zero. Para implementar esse filtro trivial de primeira ordem no MATLAB, poderíamos usar o filtro. A chamada será assim: eo resultado é: Este negócio é realmente ainda linear Podemos olhar para isto empiricamente: Para uma abordagem mais geral, considere o valor de uma amostra de saída y (n). Por substituição sucessiva poderíamos escrever isto como Isto é exatamente como o nosso velho amigo a forma convolução-soma de um filtro FIR, com a resposta ao impulso fornecida pela expressão .5k. E o comprimento da resposta ao impulso é infinito. Assim, os mesmos argumentos que usamos para mostrar que os filtros FIR eram lineares agora se aplicam aqui. Até agora isso pode parecer um monte de barulho por não muito. O que é toda esta linha de investigação bom para Bem responder esta questão em etapas, começando com um exemplo. Não é uma grande surpresa que possamos calcular uma amostra exponencial por multiplicação recursiva. Vamos olhar para um filtro recursivo que faz algo menos óbvio. Este tempo bem torná-lo um filtro de segunda ordem, de modo que a chamada para filtro será da forma Permite definir o segundo coeficiente de saída a2 para -2cos (2pi / 40), eo terceiro coeficiente de saída a3 para 1, e olhar para A resposta ao impulso. Não muito útil como um filtro, na verdade, mas ele gera uma onda senoidal amostrada (de um impulso) com três multiplicações por amostra. Para entender como e por que ele faz isso, e como os filtros recursivos podem ser projetados e analisados ​​em O caso mais geral, precisamos dar um passo atrás e dar uma olhada em algumas outras propriedades de números complexos, no caminho para a compreensão da transformada z.

Comments

Popular posts from this blog

Sistema de negociação preguiçosa

60 Second binary option indicator

Binary options comparison