Exponential moving average javascript
Previsão por Técnicas de Suavização Este site é uma parte dos objetos de aprendizagem de JavaScript E-Labs para tomada de decisão. Outros JavaScript nesta série são categorizados sob diferentes áreas de aplicações na seção MENU nesta página. Uma série de tempo é uma seqüência de observações que são ordenadas no tempo. Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são suavização. Estas técnicas, quando devidamente aplicadas, revelam mais claramente as tendências subjacentes. Insira a série de tempo em ordem de linha em seqüência, começando pelo canto superior esquerdo e o (s) parâmetro (s) e, em seguida, clique no botão Calcular para obter uma previsão de um período antecipado. Caixas em branco não são incluídas nos cálculos, mas zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados use a tecla Tab não seta ou digite chaves. Características de séries temporais, que podem ser reveladas ao examinar seu gráfico. Com os valores previstos, eo comportamento residual, modelagem de previsão de condições. Médias móveis: As médias móveis classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados para filtrar o ruído branco aleatório dos dados, para tornar a série de tempo mais suave ou mesmo para enfatizar certos componentes informativos contidos na série de tempo. Suavização Exponencial: Este é um esquema muito popular para produzir uma Série de Tempo suavizada. Enquanto que em Médias Móveis as observações passadas são ponderadas igualmente, a Suavização Exponencial atribui pesos exponencialmente decrescentes à medida que a observação avança. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Double Exponential Smoothing é melhor para lidar com as tendências. Triple Exponential Smoothing é melhor no manuseio de tendências de parabola. Uma média móvel exponencialmente ponderada com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 / (n1) OR n (2 - a) / a. Assim, por exemplo, uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,04878. Suavização Linear Exponencial de Holts: Suponha que a série de tempo não é sazonal, mas exibe tendência. Holts método estima tanto o nível atual ea tendência atual. Observe que a média móvel simples é caso especial da suavização exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) / Alpha. Para a maioria dos dados empresariais, um parâmetro Alpha menor que 0,40 é frequentemente eficaz. No entanto, pode-se realizar uma busca de grade do espaço de parâmetro, com 0,1 a 0,9, com incrementos de 0,1. Então o melhor alfa tem o menor erro médio absoluto (erro MA). Como comparar vários métodos de alisamento: Embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais ampla consiste na comparação visual de várias previsões para avaliar a sua precisão e escolher entre os vários métodos de previsão. Nesta abordagem, é necessário plotar (usando, por exemplo, Excel) no mesmo gráfico os valores originais de uma variável de série temporal e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as Previsões Passadas por Técnicas de Suavização JavaScript para obter os valores de previsão anteriores com base em técnicas de suavização que usam apenas um único parâmetro. Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ótimos, ou mesmo próximos, ótimos por tentativa e erros para os parâmetros. A suavização exponencial única enfatiza a perspectiva de curto alcance que define o nível para a última observação e é baseada na condição de que não há tendência. A regressão linear, que se ajusta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa a faixa de longo alcance, que está condicionada à tendência básica. Holts linear suavização exponencial captura informações sobre tendência recente. Os parâmetros no modelo de Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande, e as tendências-parâmetro devem ser aumentadas se a tendência de direção recente é apoiada pelo causal alguns fatores. Previsão de Curto Prazo: Observe que cada JavaScript nesta página fornece uma previsão de um passo adiante. Para obter uma previsão de duas etapas. Basta adicionar o valor previsto ao final dos dados de séries temporais e, em seguida, clicar no mesmo botão Calcular. Você pode repetir este processo por algumas vezes para obter as previsões de curto prazo necessárias. Se você vir esta mensagem, seu navegador desabilitou ou não suporta JavaScript. Para usar os recursos completos deste sistema de ajuda, como a pesquisa, o navegador deve ter o suporte JavaScript ativado. Médias móveis exponenciais As médias móveis exponenciais, semelhantes às médias móveis ponderadas, também atribuem um peso maior a valores de dados mais recentes. Ao contrário das Médias Móveis Ponderadas, entretanto, elas usam o valor da Média Móvel Exponencial calculado anteriormente como uma base para cálculo em vez dos valores de dados originais (não-médias). Desta forma, o método de cálculo utilizado pelas Médias Móveis Exponenciais é cumulativo, o que significa que (ao contrário das Médias Móveis Simples ou Médias Móveis Ponderadas) todos os valores de dados anteriores têm algum efeito sobre a Média Móvel Exponencial a ser calculada, embora este efeito diminua consideravelmente com o tempo . As médias móveis exponenciais tendem a ser mais precisas do que os outros tipos de média móvel quando os valores de dados originais mostram um grau de variação mais rápido ao longo do tempo (ou outra variável). A fórmula para calcular uma Média Móvel Exponencial (EMA) é: X EMA Corrente (ie EMA a ser calculada) C Valor de dados original atual K Constante de Suavização P EMA anterior (O primeiro EMA no intervalo a ser calculado é arbitrário e pode ser o O valor de dados original correspondente ou, muitas vezes, um valor de Média Móvel Simples K Constante de Suavização 2 / (1 n) n número de períodos para EMA, ou seja, a Janela a calcular Este cálculo bastante complexo talvez seja melhor ilustrado pelo exemplo. Tabela de valores de vendas mensais como mostrado anteriormente: Se calculamos a Média Móvel Exponencial de forma semelhante à Média Móvel Simples de 3 Meses, executaríamos as seguintes etapas: Eu essencialmente tenho uma matriz de valores como este: A matriz acima é Estou simplificando, estou coletando um valor por milissegundo no meu código real e eu preciso processar a saída em um algoritmo que eu escrevi para encontrar o pico mais próximo antes de um ponto no tempo. Minha lógica falha porque no meu exemplo acima, 0.36 é o pico real, Mas meu algoritmo olharia para trás e veria o último número 0.25 como o pico, pois há uma diminuição para 0.24 antes dele. O objetivo é tomar esses valores e aplicar um algoritmo para eles que irá suavizar-los um pouco para que eu tenha mais valores lineares. (Ou seja: Id como meus resultados para ser curvy, não jaggedy) Ive foi dito para aplicar um filtro exponencial de média móvel para os meus valores. Como posso fazer isso É muito difícil para mim ler equações matemáticas, eu lidar muito melhor com o código. Como processar valores em minha matriz, aplicando um cálculo de média móvel exponencial para até mesmo para fora perguntado Feb 8 12 at 20:27 Para calcular uma média móvel exponencial. Você precisa manter algum estado ao redor e você precisa de um parâmetro de ajuste. Isso requer uma pequena classe (supondo que você está usando o Java 5 ou posterior): Instantiate com o parâmetro de decadência desejado (pode ter a sintonia deve estar entre 0 e 1) e use a média () para filtrar. Ao ler uma página sobre alguma recorrência matemática, tudo o que você realmente precisa saber ao transformá-lo em código é que os matemáticos gostam de escrever índices em matrizes e seqüências com subscritos. (Eles têm algumas outras notações também, o que não ajuda.) No entanto, o EMA é bastante simples, como você só precisa se lembrar de um antigo valor não arrays estado complicado necessário. Respondeu 8 fevereiro às 20:42 TKKocheran: Muito bonito. Não é bom quando as coisas podem ser simples (se começar com uma nova seqüência, obter um novo averager.) Note que os primeiros termos na seqüência média saltarão em torno de um pouco devido a efeitos de limite, mas você obtém aqueles com outras médias móveis também. No entanto, uma boa vantagem é que você pode envolver a lógica de média móvel para o averager e experimentar sem perturbar o resto do seu programa muito. Ndash Donal Fellows Feb 9 12 em 0:06 Estou tendo dificuldade em entender suas perguntas, mas vou tentar responder de qualquer maneira. 1) Se o seu algoritmo encontrado 0,25 em vez de 0,36, então ele está errado. É errado porque assume um aumento ou uma diminuição monotônica (que está sempre subindo ou sempre indo para baixo). A menos que você média TODOS os seus dados, seus pontos de dados --- como você apresentá-los --- são não-lineares. Se você realmente deseja encontrar o valor máximo entre dois pontos no tempo, corte sua matriz de tmin para tmax e encontre o máximo desse subarray. 2) Agora, o conceito de médias móveis é muito simples: imagine que eu tenho a seguinte lista: 1.4, 1.5, 1.4, 1.5, 1.5. Eu posso suavizar isto tomando a média de dois números: 1.45, 1.45, 1.45, 1.5. Observe que o primeiro número é a média de 1,5 e 1,4 (segundo e primeiro números) a segunda (nova lista) é a média de 1,4 e 1,5 (terceira e segunda lista antiga) a terceira (nova lista) a média de 1,5 e 1,4 (Quarto e terceiro), e assim por diante. Eu poderia ter feito o período de três ou quatro, ou n. Observe como os dados são muito mais suaves. Uma boa maneira de ver médias móveis no trabalho é ir ao Google Finance, selecionar um estoque (tente Tesla Motors bastante volátil (TSLA)) e clique em technicals na parte inferior do gráfico. Selecione Média Móvel com um período determinado e Média Mínima exponencial para comparar suas diferenças. A média móvel exponencial é apenas mais uma elaboração disto, mas pondera os dados mais antigos menos do que os novos dados, esta é uma forma de polarizar o alisamento para trás. Por favor, leia a entrada da Wikipedia. Então, isso é mais um comentário do que uma resposta, mas a pequena caixa de comentários era apenas pequena. Boa sorte. Se você está tendo problemas com a matemática, você poderia ir com uma média móvel simples, em vez de exponencial. Assim, a saída que você obtém seria o último x termos dividido por x. Pseudocódigo não testado: Note que você precisará lidar com as partes inicial e final dos dados, uma vez que claramente você não pode fazer a média dos últimos 5 termos quando estiver no seu 2º ponto de dados. Além disso, há maneiras mais eficientes de calcular essa média móvel (soma soma - mais antigo mais recente), mas isso é para obter o conceito do que está acontecendo em toda. Respondeu 8 de fevereiro às 20: 41Moving Indicador Técnico Médio O Indicador Técnico de Média Móvel mostra o valor médio do preço do instrumento para um determinado período de tempo. Quando se calcula a média móvel, uma média do preço do instrumento para este período de tempo. À medida que o preço muda, sua média móvel aumenta ou diminui. Existem quatro tipos diferentes de médias móveis: Simples (também referido como Aritmética). Exponencial. Alisado e linear ponderado. As médias móveis podem ser calculadas para qualquer conjunto de dados seqüenciais, incluindo preços de abertura e fechamento, preços mais altos e mais baixos, volume de negociação ou quaisquer outros indicadores. É freqüentemente o caso quando se utilizam médias móveis duplas. A única coisa em que as médias móveis de diferentes tipos divergem consideravelmente umas das outras, é quando os coeficientes de peso, que são atribuídos aos dados mais recentes, são diferentes. No caso em que estamos falando de simples média móvel, todos os preços do período em questão, são iguais em valor. As Médias Mínimas exponenciais e Lineares ponderadas atribuem mais valor aos preços mais recentes. A maneira mais comum de interpretar a média móvel de preços é comparar sua dinâmica com a ação de preço. Quando o preço do instrumento sobe acima de sua média móvel, um sinal de compra aparece, se o preço cai abaixo de sua média móvel, o que temos é um sinal de venda. Este sistema de comércio, que é baseado na média móvel, não é projetado para fornecer entrada no direito de mercado em seu ponto mais baixo, e sua saída direita no pico. Permite agir de acordo com a seguinte tendência: comprar logo após os preços chegarem ao fundo, e vender logo depois que os preços atingiram seu pico. As médias móveis também podem ser aplicadas aos indicadores. É aí que a interpretação das médias móveis dos indicadores é semelhante à interpretação das médias móveis de preços: se o indicador se eleva acima da média móvel, isso significa que o movimento do indicador ascendente deverá continuar: se o indicador cair abaixo da sua média móvel, Significa que é provável que continue indo para baixo. Aqui estão os tipos de médias móveis no gráfico: Média Móvel Simplificada (SMA) Média Móvel Exponencial (EMA) Média Móvel Smoothed (SMMA) Média Móvel Ponderada Linear (LWMA) Cálculo: Média Móvel Simples Simples, A média móvel aritmética é calculada pela soma dos preços de encerramento do instrumento ao longo de um determinado número de períodos únicos (por exemplo, 12 horas). Este valor é então dividido pelo número de tais períodos. Onde: N é o número de períodos de cálculo. Média Móvel Exponencial (EMA) A média móvel suavizada exponencialmente é calculada adicionando a média móvel de uma determinada parcela do preço de fechamento atual ao valor anterior. Com médias móveis exponencialmente suavizadas, os preços mais recentes são de maior valor. P-porcentagem de média móvel exponencial será parecido com: Onde: FECHAR (i) o preço do encerramento do período atual EMA (i-1) Exponencialmente Movendo Média do período anterior encerramento P a percentagem de utilização do valor do preço. Média Móvel Smoothed (SMMA) O primeiro valor desta média móvel suavizada é calculado como a média móvel simples (SMA): A segunda e as médias móveis subsequentes são calculadas de acordo com esta fórmula: Onde: SUM1 é a soma total dos preços de fechamento de N (PREVSUM) é a soma suavizada da barra anterior SMMA1 é a média móvel suavizada da primeira barra SMMA (i) é a média móvel suavizada da barra atual (exceto a primeira) CLOSE (i) é o preço de fechamento atual N É o período de suavização. Média Móvel Ponderada Linear (LWMA) No caso da média móvel ponderada, os dados mais recentes são mais valiosos que os dados mais antigos. A média móvel ponderada é calculada multiplicando cada um dos preços de fechamento dentro da série considerada, por um determinado coeficiente de ponderação. Onde: SUM (i, N) é a soma total dos coeficientes de peso. Source Code A fonte MQL4 completa de Médias Móveis está disponível no Código Base: Médias Móveis Aviso: Todos os direitos sobre estes materiais são reservados pela MetaQuotes Software Corp. A cópia ou reimpressão destes materiais, total ou parcialmente, é proibida. Carregar o leitor. Os EMAs de 12 e 26 dias são as médias de curto prazo mais populares e são usados para criar indicadores como a divergência de convergência média móvel (MACD) eo oscilador de preços percentuais (PPO). Em geral, as EMA de 50 e 200 dias são usadas como sinais de tendências de longo prazo. Traders que empregam análise técnica encontrar médias móveis muito útil e perspicaz quando aplicado corretamente, mas criar havoc quando usado de forma inadequada ou são mal interpretados. Todas as médias móveis normalmente utilizadas na análise técnica são, pela sua própria natureza, indicadores de atraso. Conseqüentemente, as conclusões tiradas da aplicação de uma média móvel a um gráfico de mercado específico devem ser para confirmar um movimento de mercado ou para indicar sua força. Muitas vezes, quando uma linha de indicadores de média móvel fez uma alteração para refletir uma mudança significativa no mercado, o ponto ótimo de entrada no mercado já passou. Um EMA serve para aliviar este dilema em certa medida. Porque o cálculo EMA coloca mais peso sobre os dados mais recentes, ele abraça a ação de preço um pouco mais apertado e, portanto, reage mais rápido. Isto é desejável quando um EMA é usado para derivar um sinal de entrada de negociação. Interpretando a EMA Como todos os indicadores de média móvel, eles são muito mais adequados para mercados de tendências. Quando o mercado está em uma tendência de alta forte e sustentada. A linha de indicador EMA também mostrará uma tendência de alta e vice-versa para uma tendência de queda. Um comerciante vigilante não só prestar atenção à direção da linha EMA, mas também a relação da taxa de mudança de uma barra para a próxima. Por exemplo, à medida que a ação de preço de uma forte tendência de alta começar a se nivelar e reverter, a taxa de mudança da EMA de uma barra para a próxima começará a diminuir até que a linha de indicador se aplana ea taxa de mudança seja zero. Por causa do efeito retardado, por este ponto, ou mesmo alguns bares antes, a ação de preço já deve ter invertido. Por conseguinte, segue-se que a observação de uma diminuição consistente da taxa de variação da EMA poderia ser utilizada como um indicador que poderia contrariar o dilema causado pelo efeito retardado das médias móveis. Usos comuns do EMA EMAs são comumente usados em conjunto com outros indicadores para confirmar movimentos significativos do mercado e para avaliar a sua validade. Para os comerciantes que negociam intraday e mercados em rápido movimento, a EMA é mais aplicável. Muitas vezes os comerciantes usam EMAs para determinar um viés de negociação. Por exemplo, se um EMA em um gráfico diário mostra uma forte tendência ascendente, uma estratégia de comerciantes intraday pode ser o comércio apenas a partir do lado longo em um gráfico intraday.
Comments
Post a Comment